Clinical Article
Predictors of postconcussion syndrome after sports-related concussion? in young athletes: a matched case-control study
- Clinton D. Morgan, BA1,
- Scott L. Zuckerman, MD1,
- Young M. Lee, BSPH1,
- Lauren King, MSN2,
- Susan Beaird, DNP2,
- Allen K. Sills, MD1, and
- Gary S. Solomon, PhD1
- By Keywords:
- concussion, sports, mild traumatic brain injury, ImPACT, postconcussion syndrome, trauma
Abstract
Sport-related concussion? (SRC) is a major public health problem. Approximately 90% of SRCs in high school athletes are transient; symptoms recover to baseline within 1 week. However, a small percentage of patients remain symptomatic several months after injury, with a condition known as postconcussion syndrome (PCS). The authors aimed to identify risk factors for PCS development in a cohort of exclusively young athletes (9–18 years of age) who sustained SRCs while playing a sport.
The authors conducted a retrospective case-control study by using the Vanderbilt Sports Concussion? Clinic database. They identified 40 patients with PCS and matched them by age at injury and sex to SRC control patients (1 PCS to 2 control). PCS patients were those experiencing persistent symptoms at 3 months after an SRC. Control patients were those with documented resolution of symptoms within 3 weeks of an SRC. Data were collected in 4 categories: 1) demographic variables; 2) key medical, psychiatric, and family history; 3) acute-phase postinjury symptoms (at 0–24 hours); and 4) subacute-phase postinjury features (at 0–3 weeks). The chi-square Fisher exact test was used to assess categorical variables, and the Mann-Whitney U-test was used to evaluate continuous variables. Forward stepwise regression models (Pin = 0.05, Pout = 0.10) were used to identify variables associated with PCS.
PCS patients were more likely than control patients to have a concussion? history (p = 0.010), premorbid mood disorders (p = 0.002), other psychiatric illness (p = 0.039), or significant life stressors (p = 0.036). Other factors that increased the likelihood of PCS development were a family history of mood disorders, other psychiatric illness, and migraine. Development of PCS was not predicted by race, insurance status, body mass index, sport, helmet use, medication use, and type of symptom endorsement. A final logistic regression analysis of candidate variables showed PCS to be predicted by a history of concussion? (OR 1.8, 95% CI 1.1–2.8, p = 0.016), preinjury mood disorders (OR 17.9, 95% CI 2.9–113.0, p = 0.002), family history of mood disorders (OR 3.1, 95% CI 1.1–8.5, p = 0.026), and delayed symptom onset (OR 20.7, 95% CI 3.2–132.0, p < 0.001).
In addition, delayed symptom onset was an unexpected but strong risk factor for PCS in this cohort. Delayed symptoms could potentially result in late removal from play, rest, and care by qualified health care professionals. Taken together, these results may help practitioners identify young athletes with concussion?who are at a greater danger for PCS and inform larger prospective studies for validation of risk factors from this cohort.